Mathématiques

Question

bonjour pouvez-vous m'aider svp​
bonjour pouvez-vous m'aider svp​

1 Réponse

  • Bonjour, voici la réponse à ton exercice :

    Volume d'une pyramide

    On rappelle d'abord la formule de calcul d'un volume d'une pyramide  :

    → [tex]Vpy\:=\:\frac{1}{3} * Ab * h[/tex]

    Avec Ab : Aire de la base

    Et h : hauteur

    On doit donc d'abord calculer l'aire de la base de la pyramide, tel que :

    → [tex]Ac = c * c[/tex]

    Avec c : côté du carré

    ⇒ 34 * 34 ou 34²

    = 1156 m²

    Puis enfin le volume, tel que :

    [tex]\frac{1}{3}[/tex] * 1156 * 21

    = 8092 m³

    Longueur SH

    Pour calculer la côté SH, il faut d'abord savoir dans quel triangle il se trouve. On peut facilement remarquer qu'il fait parti du triangle SHO, dont SO est la base de la pyramide, donc un triangle rectangle. On pourra donc appliquer le théorème de Pythagore, tel que :

    Hypoténuse² = Côté Adjacent² + Côté opposé²

    Or, la seule donnée que l'on a est celle du côté adjacent SO. Il nous manque donc HO pour calculer SH. L'énoncé nous indique que les côtés de la base font chacun 34 m. HO est considéré comme allant d'un côté du carré jusqu'à la base, donc au milieu du carré pour celui-ci.

    Donc HO = [tex]\frac{34}{2}[/tex] = 17 m.

    On peut dès à présent appliquer le théorème de Pythagore.

    SH² = SO² + HO²

    SH² = 21² + 17²

    SH² = 441 + 289

    SH² = 730

    SH = [tex]\sqrt{730}[/tex]

    SH = 27,01851 m

    Rappelons que la question nous impose de donner le résultat au dm près.

    On convertit donc : m → dm (diviser par 10)

    ⇒ [tex]\frac{27,01851}{10}[/tex]

    = 2,7 dm

    Aire de la surface de la pyramide

    Maintenant qu'on a SH, et on sait que les faces latérales sont des triangles isocèles, on applique la formule de calcul de l'aire d'un triangle, tel que :

    [tex]A={\frac {b\times h}{2}}[/tex]

    = 34 * 27,02 (arrondi au centième près)

    = 918,68 / 2

    = 459,34 m²

    Sachant que la surface totale de la pyramide, c'est 4 faces latérales, on multiplie la face latérale qu'on a trouvé par 4, tel que :

    4 * 459,34

    = 1837,36 m² !

    On en conclut donc que l'aire de la surface totale de la pyramide est de 1837,36 m².

    En espérant t'avoir aidé au maximum !