Mathématiques

Question

pouvais vous m'aider pour ml exercices de maths svp​
pouvais vous m'aider pour ml  exercices de maths svp​

1 Réponse

  • Bonsoir

    Factoriser :

    (x - 1)(2x + 5) + 4x^2 + 20x + 25

    = (x - 1)(2x + 5) + (2x)^2 + 2 * 2x * 5 + 5^2

    = (x - 1)(2x + 5) + (2x + 5)^2

    = (2x + 5)(x - 1 + 2x + 5)

    = (2x + 5)(3x + 4)

    9x^2 - 81 - 2x(3x - 9)

    = (3x)^2 - 9^2 - 2x(3x - 9)

    = (3x - 9)(3x + 9) - 2x * 3(x - 3)

    = 3(x - 3)(3x + 9) - 6x(x - 3)

    = 3(x - 3)(3x + 9 - 2x)

    = 3(x - 3)(x + 9)

    5x - 20 - (2x + 3)(x - 4)

    = 5(x - 4) - (2x + 3)(x - 4)

    = (x - 4)(5 - 2x - 3)

    = (x - 4)(-2x + 2)

    = (x - 4) * 2(-x + 1)

    = 2(x - 4)(-x + 1)

    x(2x + 1) - 6x - 3

    = x(2x + 1) - 3(2x + 1)

    = (2x + 1)(x - 3)

    (2t - 1)(t - 7) - t + 7

    = (2t - 1)(t - 7) - (t - 7)

    = (t - 7)(2t - 1 - 1)

    = (t - 7)(2t - 2)

    = (t - 7) * 2(t - 1)

    = 2(t - 7)(t - 1)

    (6x - 5)^2 + 12x - 10

    = (6x - 5)^2 + 2(6x - 5)

    = (6x - 5)(6x - 5 + 2)

    = (6x - 5)(6x - 3)

    = (6x - 5) * 3(2x - 1)

    = 3(6x - 5)(2x - 1)

    (3z - 5)^3 - 2z(3z - 5)^2

    = (3z - 5)^2(3z - 5 - 2z)

    = (3z - 5)^2(z - 5)

    (4x + 3)(x - 1) + 2x^2 - 2

    = (4x + 3)(x - 1) + 2(x^2 - 1)

    = (x - 1)(4x + 3 + 2)

    = (x - 1)(4x + 5)